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Abstract. We study frequency- and wave-vector dependent charge correlations in weakly doped antifer-
romagnets using Mori-Zwanzig projection technique. The system is described by the two-dimensional t-J
model. The ground state is expressed within a cumulant formalism which has been successfully applied to
study magnetic properties of the weakly doped system. Within this approach the ground state contains in-
dependent spin-bag quasiparticles (magnetic polarons). We present results for the charge-density response
function and for the optical conductivity at zero temperature for different values of t/J . They agree well
with numerical results calculated by exact diagonalization techniques. The density response function for
intermediate and large momenta shows a broad continuum on energy scales of order of several t whereas
the optical conductivity for ω > 0 is dominated by low energy excitations (at 1.5–2J). We show that
these weak-doping properties can be well understood by transitions between excited states of spin-bag
quasiparticles.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity thermoelectric effects, etc.) –
75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

The discovery of the high-temperature superconductiv-
ity has increased the interest in strongly correlated elec-
tronic systems. Many properties of the superconducting
cuprates are still not completely understood, an effective
theory capable of modeling the ground state and the ex-
citations of these materials remains an outstanding prob-
lem. Among the interesting features in the optical response
of the cuprate materials are mid-infrared (MIR) structures
at energies at 0.2-0.5 eV, see e.g. [1,2]. Their origin has
been discussed extensively and is not yet completely clar-
ified.

The one-band Hubbard model and the t-J model
are two candidates for a description of the copper-oxide
planes. The purpose of this paper is an analytical study of
the dynamical charge response and the optical conductiv-
ity in the weakly doped t-J model at finite energies and
zero temperature.

Theoretical progress in this field is mostly based on
numerical techniques, especially on exact diagonalization
methods [3–6] and Lanczos calculations [7]. However, the
small system sizes presently accessible to numerical meth-
ods leave many problems unresolved. So it is often not
obvious whether the structures observed in the spectra ob-
tained from small-cluster calculations are finite-size effects
or bulk properties. Finite-size scaling is hard to perform
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for two-dimensional systems because of the limited num-
ber of cluster sizes. Small but finite momenta and hole
concentrations cannot be investigated by numerics.

The spin response of doped antiferromagnets has also
been studied in a number of analytical papers but only few
authors have investigated the optical conductivity and the
charge density response function [8–12]. The low-energy
part of the optical conductivity has been found to fall
off slower than predicted by Drude theory; a pronounced
MIR structure is visible especially at zero or low tem-
perature (T � t, J) and small doping (δ < 10%). Some
of the analytical results indicate sharp peaks in the den-
sity response at large momenta [8,9]. A recent slave-boson
approach [11] yields one broad structure at high energy
in this regime which is consistent with numerical studies.
Besides the above mentioned fermionic models also bo-
son models have been studied, e.g. bosons (representing
holes) coupled to a fluctuating gauge field [10]. This cou-
pling leads to an incoherent density fluctuation spectrum
at finite temperatures.

The system we are interested in here is the 2D t-J
model [13,14]:

H = −t
∑
〈ij〉σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + J
∑
〈ij〉

(
SiSj −

ninj

4

)
.

(1)

Si is the local electronic spin operator and ni the elec-
tron number operator at site i. The symbol 〈ij〉 refers to
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a summation over pairs of nearest neighbors. At half fill-
ing the t-J Hamiltonian reduces to the antiferromagnetic
Heisenberg model. The electronic creation operators ĉ†iσ
exclude double occupancies:

ĉ†iσ = c†iσ(1− ni,−σ). (2)

The t-J model (1) is by now believed to describe the rel-
evant low-energy degrees of freedom of the copper-oxide
planes in the high-Tc materials. So we expect our results
to coincide with experimental observations in the under-
doped compounds at low energies only (1 eV and below).
Excitations at higher energies of course are not covered by
the t-J Hamiltonian.

We study the time- and wave-vector dependent charge-
charge correlation function defined by

Gρρ(k, t) = 〈ψ0|ρ
el†
k ρelk (−t)|ψ0〉. (3)

The corresponding Laplace transform can be written as

Gρρ(k, ω) = 〈ψ0|ρ
el†
k

1

z − L
ρelk |ψ0〉, z = ω + iη, η → 0.

(4)

Here, ρelk =
∑

q,σ c
†
k+q,σcqσ =

∑
iσ e

ikRic†iσciσ is the

Fourier-transformed charge density operator. |ψ0〉 denotes
the exact ground state of the system, and z is the complex
frequency variable. The Liouville operator L is a superop-
erator defined by LA = [H,A]− for any operator A. At
zero temperature the optical conductivity σ(ω) for fre-
quencies ω > 0 is related to the charge response function
Gρρ(k, ω) as follows:

Re
(
σ(ω)

)
=

e2

cN
lim
k→0

ω Im
(
Gρρ(k, ω)

)
k2

(5)

where N is the total particle number. Equation (5) follows
from the continuity relation Lρelk = k · jk where jk is the
Fourier-transformed charge current density operator.

Due to strong correlations usual diagrammatic tech-
niques based on Wick’s theorem can not be easily ap-
plied to solve the Hamiltonian (1). Neither the first nor
the second part is bilinear in fermion operators, and the
creation and annihilation operators ĉ†iσ and ĉiσ do not
obey simple anticommutation relations. For this reason,
non-standard analytical methods like variational wave-
functions, coupled-cluster methods, slave-boson and slave-
fermion techniques or 1/N expansions have been applied
to the 2D t-J model and related strongly correlated sys-
tems.

In the following, a projection technique [15–17] ap-
proach based on the introduction of cumulants to eval-
uate charge density response functions is presented. We
focus here on the finite-energy contributions: since we do
not consider the diamagnetic part of the current we do
not obtain results for the response at zero energy, so the
present calculation does not yield a Drude-like contribu-
tion to σ(ω). In a recent letter [18] we have published first
results for Gρρ(k, ω) and σ(ω) using the present method.

Here we employ an improved set of projection variables
and present more details of the calculation. At interme-
diate and large momenta we find for the density response
function a broad continuum of excitations on energy scales
of several t. The optical conductivity for finite ω is domi-
nated by a small number of peaks at low energies of order
J . The features and the different scaling behavior of these
spectra can be explained in terms of internal degrees of
freedom of the spin-bag quasiparticles.

The paper is organized as follows: in Section 2 we
briefly sketch the cumulant method proposed in refer-
ences [19–21] and show how to calculate dynamical corre-
lation functions. The description of the ground state of the
weakly doped t-J model within the cumulant formalism
is subject of Section 3. The employed ground state wave-
function consists of independent hole quasiparticles (mag-
netic polarons) moving on an antiferromagnetic back-
ground. The choice of appropriate dynamical variables for
the projection technique is shown in Section 4. The vari-
ables are constructed from path operators which form the
hole quasiparticles. In Section 5 we present results for the
charge-charge correlation function and the optical conduc-
tivity. They will be compared with results from numerical
investigations found in the literature. A discussion of the
results will close the paper.

2 Cumulant method for correlation functions

A recently introduced approach for calculating expecta-
tion values and dynamical correlation functions [19–21]
is based on the introduction of cumulants. Provided that
the Hamiltonian of the system can be split into an unper-
turbed partH0 and a perturbation H1, H = H0+H1, with
eigenstates and eigenvalues ofH0 known, this method uses
the decomposition

e −λH = e −λ(H1+L0) e −λH0 . (6)

This relation can be proved by comparing the equations
of motion of either side with respect to λ. L0 is the Liou-
ville operator corresponding to H0, defined by the relation
L0A = [H0, A]− for any operator A. Let us denote the
ground state of the unperturbed Hamiltonian H0 by |φ0〉
and its energy by ε0

H0|φ0〉 = ε0|φ0〉. (7)

Here we are interested in calculating dynamical correlation
functions of operators Bν

Gνµ(ω) = 〈ψ0|δB
+
ν

1

z − L
δBµ |ψ0〉 (8)

where we have introduced δBν = Bν − 〈ψ0|Bν |ψ0〉. Using
(6) one can show [21] that these correlation functions can
be rewritten as

Gνµ(ω) = 〈φ0|Ω
+B+

ν

(
1

z − L
Bµ

)·
Ω|φ0〉

c. (9)
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The operator Ω has similarity to the so-called wave oper-
ator (or Moeller operator known from scattering theory).
Within cumulants it transforms the ground state |φ0〉 of
the unperturbed system into the exact ground state |ψ0〉
of H. Explicitly it is given by

Ω = 1 + lim
x→0

1

x− (L0 +H1)
H1. (10)

The brackets 〈φ0| ... |φ0〉c denote cumulant expectation
values formed with |φ0〉. The dot · indicates that the quan-
tity inside (...)· has to be treated as a single entity in the
cumulant formation. For a detailed discussion of cumu-
lants see e.g. Kubo [22].

The relation (9) can be applied to either weakly or
strongly correlated systems because its use is indepen-
dent of the operator statistics, i.e., it is valid for fermions,
bosons or spins. Note that cumulants ensure size consis-
tency for any subsequent approximations for the wave op-
erator Ω.

Using Mori-Zwanzig projection technique [15,16] one
can derive the following set of equations of motion for the
dynamical correlation functions Gνµ(ω):∑

ν

(zδην − ωην −Σην(ω))Gνµ(ω) = χηµ. (11)

χην , ωην , and Σην are the static correlation functions,
frequency terms, and self-energies, respectively. They are
given by the following cumulant expressions:

χην = 〈φ0|Ω
+B+

η Bν Ω|φ0〉
c,

ωην =
∑
λ

〈φ0|Ω
+B+

η (LBλ )·Ω|φ0〉
cχ−1
λν ,

Σην(ω) =
∑
λ

〈φ0|Ω
+B+

η

(
LQ

1

z −QLQ
QLBλ

)·
×Ω|φ0〉

cχ−1
λν , (12)

χ−1
νµ is the inverse matrix of χνµ, and Q is given by

Q = 1− P, P =
∑
νµ

Bν Ω|φ0〉
cχ−1
νµ 〈φ0|Ω

+B+
µ . (13)

P denotes a projection operator projecting onto the sub-
space of the Liouville space spanned by the operators Bν ,
Q projects onto the complementary subspace.

The described cumulant version of projection tech-
nique has a conceptual advantage compared to stan-
dard projection technique. Using projection technique the
Laplace transform of a correlation function may be writ-
ten as a continued fraction expansion (or a set of equa-
tions of motion) describing the dynamics of the system.
The continued fraction contains expectation values which
are static quantities. These expectation values have to be
evaluated with the ground state of the interacting system.
In standard projection technique this has to be done sep-
arately using mean-field methods or perturbation theory.
In contrast, in the cumulant approach static and dynami-
cal aspects of the system are treated along the same lines.
For a further discussion see [21].

3 Ground state wavefunction

Now we turn to the t-J model at weak doping. The de-
scription of the ground state within the cumulant formal-
ism used here has been shown to produce reasonable re-
sults for the doping dependence of the staggered magne-
tization and the spin-wave spectrum of the antiferromag-
netic phase of the doped system [23].

In the following δ denotes the hole concentration away
from half filling. Our system with N lattice sites possesses
M = δN dopant holes. The Hamiltonian is decomposed
into H0 and H1 as follows:

H0 = HIsing = J
∑
〈ij〉

(Szi S
z
j −

ninj

4
) + J(N − 2M),

(14)

H1 = Ht +H⊥

= −t
∑
〈ij〉,σ

(ĉ+iσ ĉjσ + ĉ+jσ ĉiσ) +
J

2

∑
〈ij〉

(S−i S
+
j + S+

i S
−
j ).

The ground state |φ0〉 of the unperturbed Hamiltonian
H0 is an antiferromagnetically ordered Néel state with M
holes. The holes have fixed momenta km and are located
on the sublattice σm (σm =↑, ↓)

|φ0〉 = ĉk1σ1 . . . ĉkMσM |φNéel〉

=
1

(N/2)M/2

M∏
m=1

( ∑
im∈σm

ei kmRim ĉimσm

)
|φNéel〉.

(15)

In H0 we have shifted the energy level so that
〈φ0|H0|φ0〉 = 0.

Within the cumulant method we employ an exponen-
tial ansatz [24] for the wave operatorΩ, Ω = eS . Here, the
operator S contains the effect of the perturbation H1 onto
the unperturbed ground state |φ0〉. We have to consider
two parts of H1, the spin-flip term H⊥ and the hopping
term Ht.

The hole motion processes induced by Ht are de-
scribed by path operators [25–28] which leads to the pic-
ture of spin-bag quasiparticles [29]. Here we define path
concatenation operators An,ξ(i) where i denotes a lattice
site, n the path length, and ξ the individual path shape:
An,ξ(i) operating on the Néel state with one hole at site i,
ĉi↑|φNéel〉, moves the hole n steps away and creates a path
or string ξ of n spin defects attached to the transferred
hole. For n = 1 there are 4 different path shapes (Fig. 1),
for n = 2 there are 12 and so on. Explicitly, the operators
An,ξ(i) for sites i on the ↑-sublattice are defined by

A1,ξ(i) =
∑
j

ĉj↓ĉ
+
i↓R

ξ
ji,

A2,ξ(i) =
∑
jl

ĉl↑S
+
j ĉ

+
i↓R

ξ
lji, (i ∈↑, j ∈↓, l ∈↑, m ∈↓)

(16)

A3,ξ(i) =
∑
jlm

ĉm↓S
−
l S

+
j ĉ

+
i↓R

ξ
mlji, . . .
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↑ ↑↑A |ϕ     > A |ϕ     >A |ϕ     >A |ϕ     >

i i ii

↑

Fig. 1. Path shapes of length 1
created by the operators A1,ξ act-
ing on a hole at site i in the
↑-sublattice.

The operators An,ξ for sites i on the “down” sublattice are
defined analogously with all spins reversed. The matrices

Rξin...i1 allow the hole to jump along a path of shape ξ:

Rξin...i1 =

{
1 i1, ..., in connected by path of shape ξ
0 otherwise.

(17)

Having defined the excitation operators An,ξ(i) the wave
operator Ω used for the cumulant formalism takes the
form

Ω=exp

nmax∑
n=1

mn∑
ξ=1

λn,ξAn,ξ

, An,ξ =
∑
i

An,ξ(i) (18)

with parameters λn,ξ yet unknown. Note the additional

definiton A0(i) = 1
2

∑
σ ĉiσ ĉ

†
iσ = (1− ni↑)(1 − ni↓) which

is the only “path” with zero length (ξ = 1). This oper-
ator is a projection operator on the empty state at site
i. The path operators An,ξ commute with each other be-
cause they only contain spin-flip operators destroying Néel
order. Applying the operator Ω (18) to the unperturbed
ground state (15) adds to each hole a cloud of spin de-
fects leading to a spin bag or magnetic polaron [28,29].
In the ansatz (18) we use separate coefficients λn,ξ for
all individual paths An,ξ. This is an extension compared
to the ansatz of reference [23] where all paths with the
same length n had been given the same weight. The addi-
tional degrees of freedom improve the ground-state wave-
function for non-zero hole momentum taking into account
that the quasiparticle state is not exactly s-like, see also
Section 5.3.

The transverse part H⊥ of the magnetic exchange cre-
ates or destroys pairs of spin defects and therefore can
change the length of a given path of spin defects by 2.
This process leads to a coherent motion of the hole quasi-
particle through the lattice [26,27].

Additional spin fluctuations in the antiferromagnetic
background will be neglected here. The results show that
this approximation gives already reliable results for the
charge density response of the system because the charge
dynamics is mainly determined by the motion of the
hole quasiparticles. However, for a description of magnetic
properties or the spin response of the system these ground-
state spin fluctuations would be essential, see e.g. [23].

The coefficients λn,ξ of the ansatz (18) are determined
by the condition for Ω|φ0〉 to be an eigenstate of H. Fol-

lowing reference [24] one arrives at a non-linear set of equa-
tions for the ground-state energy E0 and the coefficients
λn,ξ:

E0 = 〈φ0|HΩ|φ0〉
c,

0 = 〈φ0|A
†
n,ξHΩ|φ0〉

c (19)

with Ω given by (18). The cumulant expectation values
have to be taken with respect to the unperturbed ground
state (15). The set of equations (19) together with the ad-
ditional approximation of independent hole quasiparticles
leads to a generalized eigenvalue problem. For details see
reference [23]. The total ground-state energy depends on
the initial momenta of the hole quasiparticles km in (15).
The energy minimum for the one-hole problem is located
at k = (±π/2,±π/2) which leads to a hole-pocket Fermi
surface. Further properties of the one-hole spectrum are
discussed in Section 5.3. The used picture of independent
quasiparticles is appropriate for small hole concentrations,
i.e., for a dilute gas of holes moving in an antiferromag-
netic background.

4 Dynamical variables for charge correlations

To calculate dynamical charge correlation functions we
employ the cumulant version of Mori-Zwanzig projection
technique as described in Section 2. At first we have to
choose a set of relevant operators Bν . Here we are going
to neglect the self-energy terms Σνµ from (12). This can
be done using a sufficiently large set of operators Bν to
cover the charge dynamics we are interested in.

One variable to be included is the charge density
operator itself. Note that the particle density
ρelk =

∑
iσ e

ikRi ĉ†iσ ĉiσ and the hole density ρholek =
1
2

∑
iσ e

ikRi ĉiσ ĉ
†
iσ =

∑
iσ e

ikRiA0(i) are equivalent
quantities according to

ρholek + ρelk =
∑
iσ

eikRi(
1

2
ĉiσ ĉ

†
iσ + ĉ†iσ ĉiσ) = N δk,0. (20)

Note that
∑
σ(1

2 ĉiσ ĉ
†
iσ + ĉ†iσ ĉiσ) is the projector on the

empty and singly occupied states at site i.
As first variable we therefore choose ρholek . Additional

dynamical variables Bν can be deduced from the action
the Liouville operator to the first variable ρholek , i.e. from
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A3,1↑A3,1 |ϕ     > ↑2,4,∆=0 |ϕ     >

ii

Fig. 2. Effect of B2,4,0 on a path of length 3 created by A3,1.

Lρholek , L(Lρholek ) etc. All variables should provide parti-
cle number conservation because H and the density oper-
ator do not change the total number of particles.

The hopping part of L creates strings of spin defects
when applied to ρholek , i.e., Lnt ρ

hole
k is a sum of path con-

catenation operators up to length n. The spin-flip part
L⊥ creates or destroy pairs of spin defects. It neglected
or changed the length of a spin-defect path by 2. Addi-
tional processes connecting paths of different holes, i.e.
hole-hole interactions, will be neglected consistently with
the ground state evaluation procedure. Assuming that the
charge dynamics is mainly carried by the spin-bag quasi-
particles we define a set of variables which contains the
processes described above:

Bn,ξ,∆(k) =
∑
i,σ

eikRi(An,ξ(i+∆)ĉi+∆,σ)(A0(i)ĉiσ)†

=
∑
i,σ

eikRi Bn,ξ,∆(i) (21)

where An,ξ(i) is a path operator of length n with the path
shape ξ acting on a hole at site i, as defined in the previous
section. The indices n, ξ,∆ replace the general index ν of
the dynamical variables Bν in equations (8, 9). The opera-
tor Bn,ξ,∆ couples to a hole at site i destroying it, creates
a hole at site Ri+R∆ and adds the path An,ξ. Here, R∆

is a vector connecting two sites on the same sublattice,
i+∆ is a short-hand notation for Ri+R∆. As an example,
Figure 2 shows the effect of the variable B2,4,0 applied to a
path state A3,1ĉi↑|φNéel〉. Variables with ∆ 6= 0 arise from
the application of H⊥ at sites at the beginning of a spin-
defect path. Such a process shortens the path by 2 and
moves the initial site of the quasiparticle (the path starting
point) two sites away (|R∆| = 2). The operators Bn,ξ,∆
provide a coupling between the ground state and excited
states of the spin-bag quasiparticles, see Section 5.3. So
the relevant part of the Liouville space spanned by the
operators Bn,ξ,∆ contains all individual path states of the
holes. Note that the first of these operators is the hole

density operator itself:

B0,1,0(k) = ρholek =
1

2

∑
iσ

eikRi ĉiσ ĉ
†
iσ. (22)

The quantity we are interested in is therefore the diagonal
correlation function Gνν(k, z) with ν = (0, 1, 0).

Additional projection variables could be found by ap-
plying the spin-flip term H⊥ to Bn,ξ,∆ at sites along the
path. Those variables would provide a coupling to states
with spin fluctuations separated from the spin-bag quasi-
particles. Such processes would describe scattering of the
quasiparticle states with spin waves, they will be neglected
here.

The above set of dynamical variables is an extension of
the one used in previous calculations [18]. There we had
included only variables with ∆ = 0. The new variables
with ∆ 6= 0 provide additional degrees of freedom be-
ing useful if more than one hole is present in the system.
This can be easily understood from a comparison with
the density response of a system of free fermions: the cor-
rect excitations are obtained there if one splits the density

ρk =
∑

q c
†
k+qcq =

∑
i e

ikRic†i ci into a set of dynamical

variables {c†k+qcq} where q are the momenta of the par-
ticles present in the ground state. An equivalent set of
variables can be obtained from linear combinations of the
{c†k+qcq} leading to {

∑
i e

ikRic†i+∆ci} which correspond
to the Bn,ξ,∆ of the present calculation.

Having chosen the set of projection variables (21) we
can consider the equations of motion (11) for the correla-
tion functions of the operators Bn,ξ,∆. The relevant terms
for the dynamics are the static correlation functions and
the frequency terms given in (12). The arising cumulant
expectation values can be transformed to normal expecta-
tion values according to Appendix A. Calculating the ma-
trix elements we have neglected hole-hole interaction pro-
cesses and geometry effects such as spiral paths. Within
these approximations the path operators form an orthog-
onal basis set,

〈φ0|A
†
n,ξAm,η|φ0〉 = M δnmδξη, (23)

whereM is the number of holes present in the system. The
static matrix χ from (12) therefore becomes proportional
to a unity matrix:

〈φ0|Ω
†B†n,ξ,∆Bm,η,Θ Ω|φ0〉

c = M δnmδξηδ∆Θ. (24)

The elements of the frequency matrix from (12) contain
the hole motion processes. To be short, here we only state
the results for one hopping process:

〈φ0|Ω
†B†n,ξ,∆(LtBm,η,Θ)·Ω|φ0〉

c

= tM(δnξ,mη+1 + δnξ+1,mη)δ∆Θ (25)

where δnξ,mη+1 is 1 if the path Anξ is obtained from Amη
by one further hopping process, otherwise it is zero. For
more details concerning the matrix elements we refer to a
recent publication [30].
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Fig. 3. Charge response
functions obtained from
the present calculation
for very small δ, dif-
ferent momentum trans-
fers and parameter val-
ues t/J=1, 2.5, and 5.
The peaks are plotted
with Lorentzians using
an artificial linewidth of
0.1t.

5 Results

In the numerical calculations we have included paths up
to length 5 which gives a set of 485 path variables An,ξ.
The system has a few holes (δ � 1) in each of the four hole
pockets (at momenta (±π/2,±π/2)). It can be shown
that in this case four different vectors ∆ in the set of
dynamical variables are sufficient to describe the charge
dynamics at low doping. Note that this approximation
does not take into account changes of the hole Fermi sur-
face with doping, so our treatment is strictly valid only
in the limit of δ → 0. These Fermi surface changes would
be important for a good description of the low-energy in-
traband excitations of the hole quasiparticles at non-zero
doping (see below).

We have tested maximum path lengths of 2, 3, 4, and
5. Beyond a path length of 2 we obtained no essential
differences in the spectra except of richer structures with
an increasing number of projection variables. Thus we ex-
pect only minor changes when including longer paths, see
Section 5.3.

5.1 Charge correlation function

Results for the charge response function Gρρ(k, ω) at t/J
= 1, 2.5, and 5 are shown in Figure 3. Note that we ob-
tain discrete spectra because we have neglected all self-
energies. In the figures we have introduced Lorentzians
with a small artificial linewidth. The main doping depen-
dence of the spectra is found in the intensity which is
proportional to the hole concentration. This follows from
the assumption of independent hole motion and a doping-
independent spin background (rigid-band picture). Within
these approximations all matrix-elements in (12) are es-
sentially proportional to the hole concentration δ. From

(11) it is seen that therefore all correlation functions Gνµ
are proportional to δ.

For smaller momentum the spectral weight is mainly
concentrated in a peak near ω = 0. With increasing mo-
mentum we find a transfer of spectral weight to higher
energies. The figures for different values of t/J show that
the broad structures observed in the spectra for large mo-
menta scale with t, e.g., the maximum spectral weight in
the charge-response function at (π, π) remains at energies
of about 6t independent of t/J . This scaling behavior will
be discussed in the following sections.

Next we compare our data with Exact Diagonalization
(ED) results. Due to the small cluster sizes no numerical
spectra are available for small hole concentrations. Fig-
ure 4. shows a comparison of our data for t/J = 2.5 with
ED data for δ = 25% taken from reference [3]. It is remark-
able that even for this large hole concentration we observe
a qualitatively good agreement with our spectra: both re-
sults show the weight transfer to higher energies with in-
creasing momentum and a broad continuum of excitations
at large momenta. Differences may be either due to the
small number of sites in the numerical calculations (which
leads to an energy gap in all spectra and other finite-size
effects) or due to the neglection of relaxation processes
(which would produce finite linewidths) and Fermi-surface
effects (which would affect the low-energy spectrum for
non-zero doping) in the present calculation.

5.2 Optical conductivity

Using equation (5) one can deduce the optical conductiv-
ity from the calculated charge response function. Results
for Re(σ(ω)) are displayed in Figure 5. We find a few
peaks at low energy, the positions of these main peaks
scale with J . These features at 1.5−2J were also found in
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Fig. 4. Left panel: charge response function from Figure 3
for t/J = 2.5. Right panel: exact diagonalization data from
[3] for comparison. t/J = 2.5. The numerical data have been
calculated for a 4× 4 periodic cluster and a hole concentration
of δ = 25%.

numerical studies of the t-J and Hubbard models. They
are supposed to coincide with the MIR structures observed
in optical spectra of high-Tc superconductors being lo-
cated at 0.2–0.5 eV (for t ≈ 0.5 eV, J ≈ 0.15–0.2 eV), see
e.g. [2].

Within the present calculation we do not obtain a
Drude-like contribution to σ(ω) since equation (5) is valid
for non-zero frequency only, i.e., it does not include the
diamagnetic part of the current (due to the neglection
of the self-energies which excludes scattering processes of
the quasiparticle states and the assumption of indepen-
dent hole motion the Drude contribution would have the
form D δ(ω)). So the present calculation cannot account
for analytical features as, e.g., the drop-off of the Drude
peak of finite ω.

Comparing our results with numerical data (at higher
doping) we again observe reasonable agreement e.g. with
the ED results from reference [6] for δ = 12.5%.

5.3 Relation to the one-particle spectrum

For the interpretation of the calculated spectra one can
consider the one-hole spectrum of the Hamiltonian within
our approximation. From the diagonalization of the one-
hole problem in the subspace of path operators An,ξ one
obtains several bands for the spin-bag quasiparticles. As
is well known, the lowest band has a minimum at (±π/2,
±π/2) and a bandwidth of about 2J . It corresponds to a
quasiparticle with s-like symmetry. The spin-bag states in
the higher bands have nodes in the coefficients λn,ξ (com-
pare (18) ). Note, however, that a classification according
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Fig. 5. Optical conductivity for small hole concentration
and different t/J . The spectra have been calculated from the
charge-charge correlation function using (5).

to angular momentum (p, d, f and so on) is not appropri-
ate at least for longer paths because the path states An,ξ
do not obey simple rotational symmetry. The total number
of one-particle states is of course equal to the number of
considered path variables. Increasing the maximum path
length nmax adds essentially many non-s-like states to the
spectrum which have energies between the s-like states. So
our results do not depend strongly on the maximum path
length beyond nmax > 2.

The low-energy peak at small, but finite momenta
is caused by excitations within the lowest quasiparticle
band. These excitations are treated correctly here only
for the limit δ → 0 since we have neglected changes of
the Fermi surface with doping. The next structures at low
energies arise from transitions between the first and sec-
ond/third quasiparticle band, i.e., from the s-like ground-
state to p-like states. These structures are especially visi-
ble at small momentum transfer, i.e., in the optical con-
ductivity, see the discussion below. The high-energy part
of the spectra corresponds to excitations to higher bands.
So our calculation supports the discussion given in ref-
erence [6] where only the two low-lying states have been
considered in a simplified analytical calculation for the
main peak found in the optical spectrum. We want to em-
phasize that taking into account all string states (up to a
truncation length) as done in the present work reproduces
not only this main peak but the incoherent continuum
at energies up to 8t also found in numerical work. So we
have mapped the charge excitations for the t-J model (1)
at small hole concentration to transitions between bands
of non-interacting spin-bag quasiparticles (not taken into
account are changes of the Fermi surface of these quasi-
particles with doping and scattering of the quasiparticle
states).

The different scaling behavior of Gρρ(k, ω) (for large
k) and σ(ω) with t/J arises from the internal structure of
the spin-bag quasiparticles. The width of the lowest band
as well as low excitation energies scale primarily with J ,
i.e., the excitation energies can be written as at+ bJ with
b/a � t/J ≈ 2 ... 5. Therefore the excitation from the
ground state to the first excited state has an energy of
order J as seen in the optical conductivity. At large k
the energies of the structures in the density response scale
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with t. This can be understood from the following qual-
itative arguments: at large k the operator ρholek couples
the ground state to higher excited states of the quasipar-
ticle. This coupling depends on t/J since the quasipar-
ticle size changes with t/J (mapping the localized hole
problem onto its continuum version [31] one finds that
the path coefficients decrease exponentially with a length
scale proportional to (t/J)1/3). Thus the spatial distance
of the real-space nodes in the coefficients λn,ξ increases
with t/J (for fixed n, ξ), in other words, for a fixed spatial
node distance the excitation number n increases with t/J .
Therefore with increasing t/J the operator ρholek (for fixed
k) couples to higher quasiparticle states. This results in
structures scaling with t in the density response function
for large k.

It is worth noting that the non-s-like states of the
quasiparticle play an important role for the charge dy-
namics considered here. Neglecting them, i.e. considering
all paths with the same length as ONE dynamical vari-
able, would be a bad approximation. However, for the one-
particle dynamics these states do nearly not contribute to
the spectrum: if one calculates the one-hole spectral func-
tion in the subspace of path operators then only the s-like
states carry considerable spectral weight. The reason for
this behavior lies in the symmetry of the Hamiltonian.

6 Conclusion

In the present paper we have studied the charge dynam-
ics in weakly doped antiferromagnets described by the t-J
model at zero temperature. Our ansatz for the ground-
state wave-function [23] includes mobile hole quasiparti-
cles. Background spin fluctuations have been neglected.
Thus the ground state has antiferromagnetic long-range
order independent of hole doping. We have used this
ground state together with a cumulant version of
Mori-Zwanzig projection technique to calculate dynami-
cal charge correlation functions.

We find structures at lower energies scaling with J
for zero and small momentum and a transfer of spec-
tral weight to higher energies with increasing momentum.
At intermediate and large momenta the density response
spectrum consists of a broad continuum at energies of or-
der t. The calculations do not cover a Fermi-surface re-
lated low-energy response (including a Drude-like peak
in the optical conductivity). Our results for the density
response function as well as the optical conductivity are
in reasonable agreement with recent numerical data ob-
tained by exact diagonalizations [3,6,11] (see Figs. 3–5).
However, these numerical calculations have been done for
large hole concentrations (e.g., 25%) where only short-
range magnetic order is present. In contrast, our calcula-
tions are based on magnetic long-range order and neglect
background spin fluctuations. Thus we conclude that the
fact whether the quasiparticles move in a long-range or-
dered background or not does not have an essential in-
fluence on the charge response of the system at higher

energies. The dynamics is determined by the local antifer-
romagnetic order in the vicinity of the hole quasiparticles,
i.e., the magnetic correlation length has to be of the order
of the quasiparticle size. More precisely, our treatment is
valid with antiferromagnetic order on length scales of the
longest path variables included in the calculation (here 5
lattice constants). Note here that the magnetic correlation
length in the high-Tc materials is about 5 lattice constants
for δ = 12.5% and about 2.5 lattice constants for δ = 25%
differing somewhat for different compounds. (Numerical
simulations for the t-J and related models yield similar
values although precise data cannot be obtained because
of the restricted system sizes.)

A remaining task would be to include doping depen-
dent background spin fluctuations in our ansatz for the
wave operator Ω as done in the static calculations of ref-
erence [23]. The scattering of quasiparticles at spin fluc-
tuations would cause a decay of the excited quasiparti-
cle states and provide lifetime broadening of the lines in
the response functions. From this we do not expect dras-
tic changes in the response functions for larger energies.
A second possible improvement concerns the inclusion of
Fermi-surface related response at low energies, work along
this line is in progress.

Appendix A: Evaluation of cumulants

In this appendix we show how to evaluate cumulants with
an exponential ansatz for the wave operator Ω. The basic
relation is

〈φ| eS
+ ∏

i

Anii e
S|φ〉c = 〈ψ|

∏
i

Anii |ψ〉
c (A.1)

with Ai being arbitrary operators. Note that on the l.h.s.
the operators S+, S and Ai are subject to cumulant or-
dering whereas on the r.h.s. only the Ai operators are
cumulant entities. However, the cumulants on the r.h.s.
are formed with the new wavefunction |ψ〉 = eS|φ〉.

Equation (A.1) can be proven either by integrating
infinitesimal transformations (1+S/N) and using proper-
ties of cumulants [32] or by explicitly using the definition
of cumulant expectation values. Here we demonstrate the
second way. We start from the definition of cumulant ex-
pectation values [22] for a product of arbitrary operators
Ai and an arbitrary state |φ〉:

〈φ|
∏
i

Anii |φ〉
c=

(∏
i

(
∂

∂λi

)ni)
ln〈φ|

∏
i

eλiAi |φ〉|λi=0∀ i.

(A.2)
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We consider the following expression:

〈φ|eαS
+ ∏

i

Anii eβS |φ〉c

=
∞∑
n=0

∞∑
m=0

αn

n!

βm

m!
〈φ|S+n

∏
i

Anii S
m|φ〉c

=
∞∑
n=0

∞∑
m=0

αn

n!

βm

m!

(
∂

∂ξ

)n (
∂

∂η

)m
×

[(∏
i

(
∂

∂λi

)ni)
ln〈φ|eξS

+ ∏
i

eλiAieηS |φ〉

]
ξ=η=0
λi=0∀ i

.

(A.3)

The last expression can be interpreted as a series expan-
sion of the term in brackets [...] with respect to ξ and η
around 0:

〈φ|eαS
+∏
i

Anii e
βS|φ〉c=

(∏
i

(
∂

∂λi

)ni)
×ln〈φ|eαS

+∏
i

eλiAieβS|φ〉|λi=0∀i

= 〈eαSφ|
∏
i

Anii |e
βSφ〉c. (A.4)

In the last equation we have reintroduced (generalized)
cumulants, now formed with the bra state 〈eαSφ| and the
ket state |eβSφ〉. With α = β = 1 we obtain the desired
result (A.1).

Explicitly we find from (A.1):

〈φ|eS
+

AeS |φ〉c =
〈φ|eS

+

AeS |φ〉

〈φ|eS+eS |φ〉
,

〈φ|eS
+

AB eS |φ〉c =
〈φ|eS

+

AB eS |φ〉

〈φ|eS+eS |φ〉

−
〈φ| eS

+

AeS |φ〉〈φ|eS
+

B eS |φ〉

〈φ|eS+
eS |φ〉2

, (A.5)

and so on.
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